3.45CT RARE DIASPORE GEMSTONES IGCDS01


Color-change diaspore, known commercially as Zultanite, is sought by designers and consumers for its special optical characteristics, namely its color and color change. Understanding the color origin of gem-grade diaspore could provide a scientific basis to guide its gemological testing, cutting, and valuation. This study uses ultraviolet-visible (UV-Vis) spectra and laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) to examine the color origin of color-change diaspore and to compare it with corundum. As Raman spectra vibration intensities are closely related to crystal direction for diaspore, crystal orientation was determined through Raman spectroscopy. The color correlation between color-change diaspore and corundum confirmed the identity of each chromophore. In addition, the effectiveness of different chromophores such as Cr3+, Fe3+, Fe2+-Ti4+ pairs, and V3+ between gem-quality diaspore and corundum is compared quantitatively.1



Regular price Save -Liquid error (product-price line 31): Computation results in '-Infinity'% $350.00
Regular price $350.00

IGCdDS01

1 In Stock Sold Out 1


Clarity
Size
Shape
Notify Me


Payment & Security
Payment methods
  • American Express
  • Apple Pay
  • Mastercard
  • PayPal
  • Visa
Your payment information is processed securely. We do not store credit card details nor have access to your credit card information.

Security
FREE SHIPPING
WORLDWIDE
BIG SAVING ON
WEEKENDS
24H SUPPORT
CONTACT US

Color-change diaspore, known commercially as Zultanite, is sought by designers and consumers for its special optical characteristics, namely its color and color change. Understanding the color origin of gem-grade diaspore could provide a scientific basis to guide its gemological testing, cutting, and valuation. This study uses ultraviolet-visible (UV-Vis) spectra and laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) to examine the color origin of color-change diaspore and to compare it with corundum. As Raman spectra vibration intensities are closely related to crystal direction for diaspore, crystal orientation was determined through Raman spectroscopy. The color correlation between color-change diaspore and corundum confirmed the identity of each chromophore. In addition, the effectiveness of different chromophores such as Cr3+, Fe3+, Fe2+-Ti4+ pairs, and V3+ between gem-quality diaspore and corundum is compared quantitatively.1